

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



## Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

### Infrared Study of Solid Cycloheptanol

E. Sciesińska<sup>a</sup>; J. Sciesiński<sup>b</sup>

<sup>a</sup> Institute of Physics of the Jagellonian University, Kraków, Poland <sup>b</sup> Henryk Niewodniczański Institute of Nuclear Physics, Kraków, Poland

**To cite this Article** Sciesińska, E. and Sciesiński, J.(1990) 'Infrared Study of Solid Cycloheptanol', *Spectroscopy Letters*, 23: 3, 293 — 300

**To link to this Article: DOI:** 10.1080/00387019008054415

**URL:** <http://dx.doi.org/10.1080/00387019008054415>

## PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

## INFRARED STUDY OF SOLID CYCLOHEPTANOL

Key words: polymorphism, hydrogen bond, infrared spectra

E. Sciesińska and J. Sciesiński\*

Institute of Physics of the Jagellonian University,  
Reymonta 4, 30-059 Kraków, Poland

\* Henryk Niewodniczański Institute of Nuclear Physics,  
Kraków, Poland

### ABSTRACT

Infrared absorption spectra of cycloheptanol-OH have been measured in the 50 - 3700  $\text{cm}^{-1}$  frequency range for crystal II', II, I and liquid phases. Order-disorder behaviour concerning orientational, conformational and hydrogen-bond properties is discussed.

### INTRODUCTION

This investigation of polymorphism of cycloheptanol by means of infrared spectroscopy is an extension of previous works on the cyclic alcohols<sup>1-3</sup>. The phase behaviour of cycloheptanol is intricate. Eight kinds of stable and metastable crystalline phases including the glassy crystal were revealed by means of

an adiabatic calorimetry method<sup>4</sup>. Among these stable crystals I, II and III are considered to be plastic, i.e. orientationally disordered according to the Timmermans criterion<sup>5</sup>. This is supported by the motional narrowing phenomenon of the NMR spectra<sup>4</sup> and by dielectric measurements for phases I and II<sup>6</sup>. On the contrary, the entropy of II-II' transition amounting to  $17.2 \text{ J mol}^{-1}\text{K}^{-1}$  would rather indicate crystal II' to be a normal ordered crystal<sup>4</sup>. Crystal II' is the low-temperature stable phase. The II-II' transition takes place from the supercooled phase II denoted sII. The aim of this work is to study this order-disorder behaviour of different phases in more detail<sup>7</sup>. In general, three kinds of order i.e. conformational, hydrogen bonding and orientational order should be considered.

#### EXPERIMENTAL AND RESULTS

IR absorption spectra in the frequency of 50 -  $3700 \text{ cm}^{-1}$  and temperature of 98 - 300 K range under various heating and cooling conditions for the sample holder with polyethylene or KRS-5 windows filled with liquid  $\text{C}_7\text{H}_{13}\text{OH}$  were measured with a Fourier transform FTS-14 Digilab spectrometer with  $2 \text{ cm}^{-1}$  resolution. Phase sequence of liquid, phases I, II, sII and II' was studied in this way. Representative results are shown in Fig.1 for the 30 - 500 and in Fig.2 for 450 -  $1550 \text{ cm}^{-1}$  range. An erroneous structure is observed for stronger bands i.e. for  $472$  and  $1035 \text{ cm}^{-1}$ , because the sample thickness was to be fitted to weaker features of the spectra. Observed frequencies below  $800 \text{ cm}^{-1}$  are listed in Table 1.

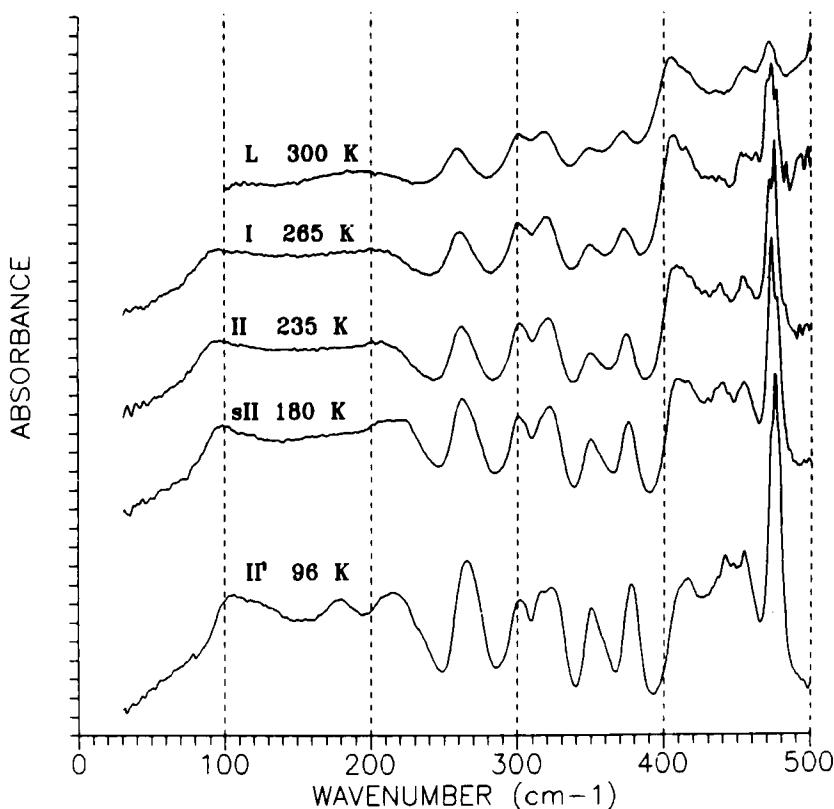



FIG. 1. Infrared absorption spectra of cycloheptanol-OH in the lattice and skeletal mode range: from the top liquid at 300 K, phase I at 265 K, phase II at 235 K, supercooled phase II i.e. sII at 180 K and phase II' at 96 K.

#### DISCUSSION

The cycloheptanol molecule can occur in several conformations. This depends on the cycloheptane ring conformation and the OH group position. Rotational isomerism of the OH group could be neglected here. The most stable conformation for cycloheptane is the twist-chair one of the  $C_2$  symmetry but an energy

TABLE 1

Low-Energy Skeletal Modes (frequencies  $\text{cm}^{-1}$  at 96 K)  
and Tentative Assignment

| Eight ring deformations |          | Two CO bending modes |         |       |
|-------------------------|----------|----------------------|---------|-------|
| out of plane            | in plane | $C_s^1$              | $C_s^2$ | $C_2$ |
| 180 a                   | 375      | 413                  | 440     | 348   |
| 215 b                   | 472      |                      | 453     |       |
| 265                     | 510      |                      |         |       |
| 300                     | 548      |                      |         |       |
| 315 a                   |          |                      |         |       |
| 322 b                   |          |                      |         |       |

a and b randomly mark the  $C_s$  and  $C_2$  ring conformations identical to skeletal conformations; superscripts 1 and 2 randomly mark axial and equatorial conformations.

barrier to the chair conformation of the  $C_s$  symmetry is low<sup>8</sup>. The boat of  $C_s$  symmetry and the twist-boat of  $C_2$  symmetry conformations are not excluded either. The OH substituant could leave the skeletal symmetry unchanged and introduces axial - equatorial differentiation in the case of  $C_s$  symmetry. Among the possible sixty internal modes of the molecule, ten low energy modes below ca  $600 \text{ cm}^{-1}$  should appear at most. These are the following skeletal modes: four out-of-plane and four in-plane ring deformation modes and two CO angle bending modes. Some of them could show conformation and/or phase sensitivity.

The only spectroscopic data for cycloheptane derivatives we could find are those by Adachi<sup>4</sup>. These are the Raman and mid IR spectra (above  $450 \text{ cm}^{-1}$ ) for liquid state and mid IR for crystals II and II' of cycloheptanol-OH. Two lowest internal modes at 179 and  $255 \text{ cm}^{-1}$  are seen there.

A general view of the spectra in Figs 1 and 2 is very similar. No appearance or disappearance of new bands in the range of internal modes is observed at phase transitions. Phase sensitive modes are clearly the 435 and  $1220\text{ cm}^{-1}$  bands showing characteristic intensity changes. No additional structure, i.e. splittings, peculiar to an ordered crystal is visible either. An important feature of the spectra, however, is an observation of thirteen low energy internal modes. It means that some skeletal modes are conformation sensitive and that at least two different conformations of the molecule appear for all the phases of cycloheptanol. A tentative assignment of skeletal modes in Table 1 is based on the following: Adachi data<sup>4</sup>; compatibility for all the phases; comparison with cyclopentanol<sup>1</sup>. The reason for the last point is that the ring strain energies for cyclopentane and cycloheptane are similar<sup>9</sup>. It is seen from Table 1 that conformation sensitive modes are mostly the CO modes; the CO stretching modes are assigned at 1035 and  $1130\text{ cm}^{-1}$  for the two ring i.e. skeletal conformations. The OH torsion at ca 700 and stretching at ca  $3300\text{ cm}^{-1}$  broad and structureless bands behave similarly to linear polymer phases of other alcohols (the bands at 725, 755, 792, 816, 830 and  $850\text{ cm}^{-1}$  do not belong to the OH torsion band, these are  $\text{CH}_2$  rocking and CC stretching modes). The OH stretching range is not shown here to make the paper shorter. The position  $\nu(\text{cm}^{-1})$  of OH stretching band of roughly  $210\text{ cm}^{-1}$  halfwidth in the temperature T range of 96 - 300 K is given by a linear equation  $\nu(T)=3186+0.487 T$  within  $\pm 6\text{ cm}^{-1}$  limit.

The most important conclusions concerning order-disorder behaviour of the phases come from the lattice mode range of the spectra below ca  $250\text{ cm}^{-1}$ . One broad structureless band similar for all the phases is seen

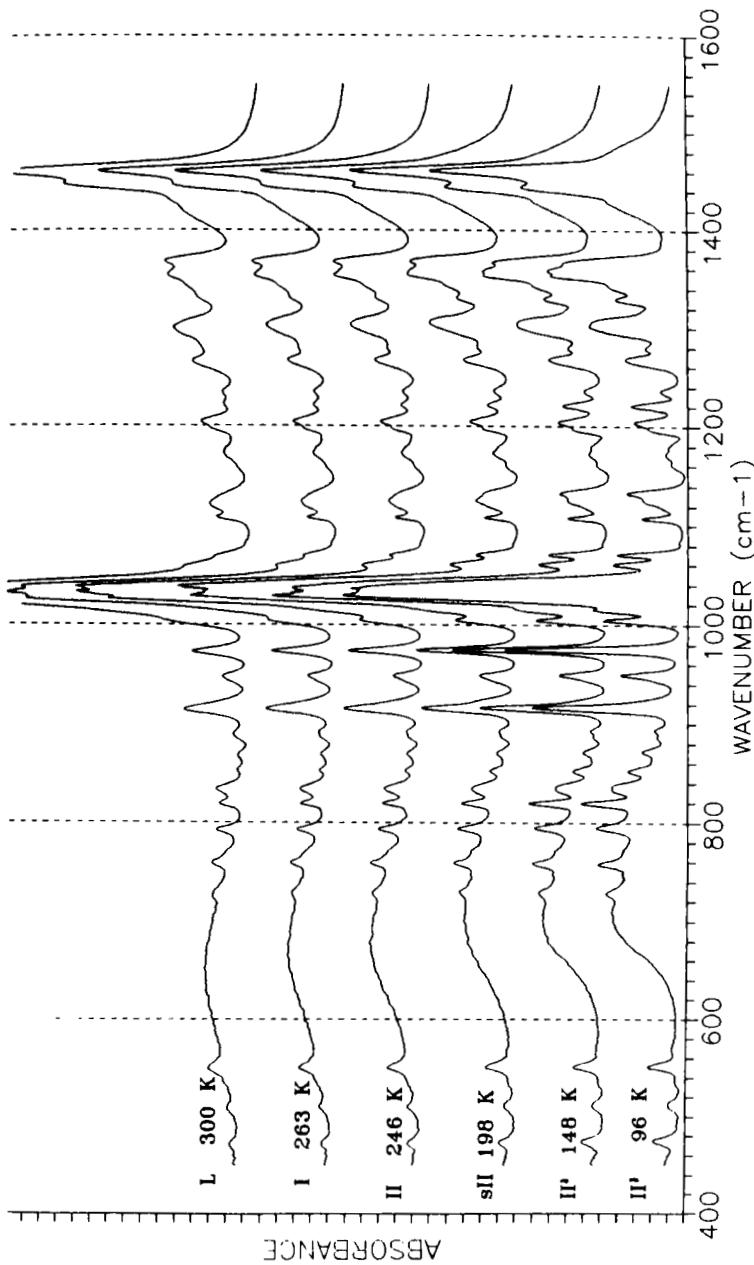



FIG. 2. Infrared absorption spectra of cycloheptanol-OH in the internal mode range: from the top liquid at 300 K, crystals I (263 K), II (246 K), sII (198 K) and II' (at 148 and 96 K).

there. Below ca  $130\text{ cm}^{-1}$  those bands are indistinguishable for all the phases. The lowest ring deformation at 180 and a band at  $215\text{ cm}^{-1}$  are more pronounced at 96 K. It is supposed that the two bands correspond to each other in the two different conformations of the ring. The  $215\text{ cm}^{-1}$  band might escape detection by Adachi due to a low abundance of that conformation. Both the 180 and  $215\text{ cm}^{-1}$  bands are superposed on a broad band of hydrogen bond stretching and bending vibrations. Hence it is seen that the low temperature phase II' of cycloheptanol shows no distinct lattice bands above  $30\text{ cm}^{-1}$  (the quality of measurements below  $50\text{ cm}^{-1}$  is worse). Such a behaviour of the lattice range is characteristic for a disordered crystal and was earlier observed for the plastic phases of cyclopentanol<sup>1</sup> and cyclohexanol<sup>2</sup>. In contrast, ordered phases of the alcohols (phase IV of cyclopentanol and phases II and III of cyclohexanol) show rich and highly structured spectra in the lattice range<sup>1,2</sup>. Therefore, it is concluded that the low-temperature phase II' of cycloheptanol is a disordered crystal. Hence cycloheptanol does not show any ordered phase.

### CONCLUSIONS

Plastic character of phases I and II of cycloheptanol is supported. Conformational disorder is ascertained for the liquid and phases I, II and II'. In spite of the summarized transition entropy of  $26.31\text{ Jmol}^{-1}\text{K}^{-1}$  being somewhat too high, the low-temperature phase II' is an orientationally disordered phase. Contrary to a dynamical disorder of plastic phases, the orientational, conformational and hydrogen bond disorders of phase II' are of static type.

Although there are no full data for cyclobutanol<sup>10</sup> and cyclooctanol<sup>10,11,12</sup>, more general statements on the polymorphism of cyclic alcohols are put for consideration here. Concerning the low-temperature ordered phases it is believed that: a hydrogen bonding is forcing different conformations of the molecule to appear, a hydrogen bonding is forcing a conformational order to set up due to some steric effects, the steric effects are ring-size dependent, therefore for the hydrocarbon rings bigger than that of cyclohexanol no ordered phases appear.

## REFERENCES

1. E. Sciesińska, J. Sciesiński and M. Godlewska, Spectrosc. Lett. **15**, 399 (1982).
2. E. Sciesińska and J. Sciesiński, Mol. Cryst. Liq. Cryst. **80**, 19 (1982).
3. E. Sciesińska, J. Mayer, I. Natkaniec and J. Sciesiński, Acta Phys. Pol. **A76**, No 4 (1989).
4. K. Adachi, H. Suga and S. Seki, Bull. Chem. Soc. Japan **45**, 1960 (1972).
5. J. Timmermans, J. Phys. Chem. Solids **18**, 1 (1961).
6. U. Poser, L. Schulte and A. Würflinger, Ber. Bunsenges. Phys. Chem. **89**, 1275 (1985).
7. Preliminary results of this work were presented at XIXth European Congress on Molecular Spectroscopy, Dresden, GDR, September 1989.
8. J.R. Brookeman and F.A. Rushworth, J. Phys. **C9**, 1043 (1976).
9. S. Lifson and A. Warshel, J. Chem. Phys. **49**, 5116 (1968).
10. A. Dworkin, A.H. Fuchs, M. Ghelfenstein and H. Szwarc, J. Physique-Lett. **43**, L-21 (1982).
11. R. Edelmann and A. Würflinger, Mol. Cryst. Liq. Cryst. **148**, 249 (1987).
12. U. Poser and A. Würflinger, Ber. Bunsenges. Phys. Chem. **92**, 765 (1988).

Date Received: 11/08/89  
Date Accepted: 12/12/89